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Exact Design of Stepped-Impedance Transformers
FENG-CHENG CHANG axpo HAROLD MOTT

Abstract—The exact solutions of the design of stepped-im-
pedance transformers presented until now have been tedious and
subject to computational error. We present here an exact synthesis
procedure which requires less effort than other exact procedures. In
addition, two recurrence formulas are given for determining the
characteristic impedances of each section. The coefficients so ob-
tained can be compared to eliminate computational errors.

Stepped-impedance transformers (SIT’s) have been discussed
frequently in the literature. Exact [11-[3], approximate [4], and
graphical solutions [5], as well as design tables [3], [6], have been
published. The exact solutions published thus far are tedious and
susceptible to computational error. In this short paper we present an
exact synthesis procedure which can be carried out with less effort
than is necessary with some other procedures.

The SIT consists of # lossless transmission-line sections, each of
electrical length ¢, terminated in resistive loads R, and Rz. The in-
put impedance of the 7 section, looking to the left, is

Zinyr—1(¢) + ]Zr tan ¢

Zin.r = Zr " 1
(¢) Zr + ]Zm,r—l(¢) tan ¢ ( )

where Z.,,r1(¢) is the input impedance of the (r—1) section and Z,
is the characteristic impedance of the 7 section.
If we introduce the frequency variable s =j tan ¢ [1] and define

) = 30 @
ZT
&= Z: 3)

we may write a normalized form of (1) as

zr—l(s) i— §

1_+ &r—1 (S)? (4)

a #(s) = &

from which we note that
& =51) = —z(—1). (5)

In these equations, r=1,2, « - + ,#n, Zpuu=R1, Zo=Ry,and R=R./R,
=Z,+1/Z0. We may solve (4) to obtain

als) = = ©

If we know 2,(s), we see from (5) and (6) that we may find 2.(s) and
¢ for all #, Further, from a knowledge of Z,..(=Rz), (3) may be used
successively to find the characteristic impedances Z, of all sections of
the SIT.

The direct use of (6) to determine the normalized impedance
functions is not convenient, and we will develop a more convenient
method. For a lossless SIT we may express z.(s) as

() = 3 Nysh / 3 Myt %
k=0 k=0

We substitute (7) into (6), which becomes
r+1 r+1

geo1(s) = ,,Z My — Ny)st [ D (Npos — & My7)sh ®
=0 k=0

if we note that M_"=N_;" = M 1" = Nppi"=0.
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From (8), z..1(s) appears at first to contain polynomials of higher
order than z.(s). However, if we substitute s= +1 into (6) and use
(5), we see that both numerator and denominator are zero. Thus the
factor (s2—1) may be removed from both numerator and denomina- _
tor of z,_1(s).

Let us write z,1(s) as

r—1 r—1
go1(s) = 2 Nyl / S Myish 9)
k=0 k=0
where we wish to determine the coefficients M and Ny ! from the
known coefficients Mz" and Ni". We multiply the numerator and
denominator of (9) by (s2—1) and compare the result to (8), and

obtain

Nyt — Nyl = Mpy” — Ny (10a)
Myt — Myt = Np(" — &My (10b)
These equations may be solved to give
Nt = (N + Np—t" + Njp—s” + - - +)
— oMy + My 4 M5+ - - ) (11a)
My =My + My + M+ -0 -)
—~ (Ngt" + Np—g” + Nip—g" 4+ - - - ) (11D)

where the series are continued over positive subscripts only, in accord
with our statement following (8). We may also obtain from (10) a
different form,

Nyt = (M1 + Mypys™ + My + - - 1)

— (Npyd" + Niwd” + Neod + - - - ) (12a)
M1 = (Nk+17 + Nk+3T + Nk+5r+ v )
= (M + My + Mg + - -+ ) (12b)

with the series continued only for subscripts less than or equal to
superscripts.
From (11) we may obtain the compact recurrence relations

Ny '= Ny — My_y! (13a)

Myt = &My — Ny 1 (13b)
and from (12) we get

Nyt = &Mp™ — Myt (14a)

Myt = Nppim — Nega™ L (14b)

Equations (13) or (14)—or alternatively (11) or (12)—may be
used to reduce the order of the normalized impedance function each
time they are applied. Thus, by their use, if 2,(s) is given, all of the
n characteristic impedances of the SIT may be found. Note that if
(11) or (13) is used, we find a coefficient in terms of the coefficients of
equal and lower powers of s, whereas, (12) or (14) gives a coefficient
in terms of the coefficients of equal and higher powers of s. This gives
us a highly useful check on computational errors in determining the
coefficients.

In general the power reflection coefficient for a lossless #-section
SIT may be written as [4]

_{42n(COS )

o) > = 1 + Lop(cos ¢)

(15)
where La,(cos ¢) is an even polynomial of degree 2n. By the trans-
formation s=j tan ¢ we may write the voltage reflection coefficient
and the input impedance function as

e
ooy = 2 (16)
au(s) = 2+ 0n() an

T Puls) ~ Quls)
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where Q,(s) and P,(s) are positive real polynomials of degree #. For
passive networks, p(s) may be found uniquely from |p(s)l 2 {7], [8].
For a Chebyshev transformer, we know that

2T N (COS ¢ o .
| o) |2 = S g '-‘%?%%R[ (18)
1
1 + ‘Z/c7)22-‘,,2 (C—Os-g;

where T, is the Chebyshev polynomial of degree #, and ¢; is defined
as ¢y =n/(1+f2/f1), with f; and f; the lower and upper passband fre-
quencies.

We write p(s) in the form

Rkﬁ(l_i

1+R ﬂ _ﬁ)

where p; and g are the poles and zeros of | p(s)]
variable and letting

p(s) =

19)

2. By change of

H = 2n cosh™ (sec ¢1) (20)
W = 2 sinh™! (1/w) @2n
we obtain
n
cosh? —
2= 1 — .
pe W 2k 1 @)
cosh? (~+] _ 7r)
2n 2n

To find px from p? it is convenient to form the two real quantities
Xo=[(px) (®)*]V2 and Y =Re (p42), from which the py are found by

1/Xk-i- Yy _1/Xk — Y
— £
2 2

(23)
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with

Ay = 1/X, =2(X: + YO/Xx C=1/U, (29
and [#/2] is #/2 for n even and (n—1)/2 for n odd. The desired
function 2x(s) is found by substituting (27) and (28) into (17).

For the maximally flat transformer we know that

1

14+ (1/w)?sec ¢ w=4| VR - 1/VR].

[o(g) ]2 = (30)

As before, we write p(s) in the form of (16), with Q, and P, given by
(27) and (28) with C, =0, and the X3 and Y% in (29) found from

2k —1
Xy = 1/1 + wtn — 2w?n cos ( 7r) 31)
"
2k—1
Vi=1—utcos (—— 7r) (32)
n

where k=1, 2, -+ -, (n/2) for n even, and k=1, 2, -, (+1)/2
for n odd.
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2k — o w 2k —1 1/2
|:cosh2 + cosh2 + cos? x — 2 cosh — cosh — cos ——— 7 — 1]
" n "
X = 24
% W T (24)
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(cosh — -4 cos
”n
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H 2k —1

cosh — — cos——— =
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Up =
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2k —1
1+ cos———
n
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2k —1 )2
™
n
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Dielectric Losses in an H-Plane-Loaded
Rectangular Waveguide

VAN RE BUI axp REAL R. J. GAGNE

Abstract—The attenuation constant due to dielectric losses in a
rectangular waveguide loaded with a dielectric slab in the /-plane
is calculated. Results for the dominant LSM;; mode are presented
graphically.
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