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Exact Design of Stepped-Impedance Transformers

FENG-CHENG CHANGAND HAROLD MOTT

Absfracf—The exact solutions of the design of stepped-im-

pedance transformers presented until now have been tedious and

subject to computational error. We present here an exact synthesis
procedure which requires less effort than other exact procedures. In

addition, two recurrence formulas are given for determining the

characteristic impedances of each section. The coefficients so ob-
tained can be compared to eliminate computational errors.

Stepped-impedance transformers (SIT’s) have been discussed

frequently in the literature. Exact [1]–[3], approximate [~], and

graphical solutions [5], as well as design tables [3], [6], have been

published. The exact solutions published thus far are tedious and

susceptible to computational error. In this short paper we present an

exact synthesis procedure which can be ca,rried out with less effort

than is necessary with some other procedures.

The SIT consists of nlossless transmission-line sections, each of

electrical length +, terminated in resistive loads Rg and RL. The in-

put impedance of the ~ section, looking to the left, is

Zin,r-l(@) + W tan O
Zirl,r(+)=zr —

Z, + fZ,n,,_I(@) tan @
(1)

where Z,n,,–l(@) is the input impedance of the (~—l) section and Z,

isthe characteristic impedance of ther section.

Ifweintroduce the frequency variable s=j tan@ [I]and define

we may write a normalized form of (1) as

2,4(S) + s
z,(s) = i-. ————

1 + ZL,(s)s

(2)

(3)

(4)

from which we note that

fr=zr(l)= –.,(–1). (5)

In these equations, r= 1,2, . . . . n, Zfi~l =RL, Zo=Rg, and R =RL/Rg
= Z.+l/Zo. !ATemay solve (4) to obtain

(6)

If we know Z.(s), we see from (5) and (6) that we may find z,(s) and

~, for all r. Further, from a knowledge of Z.+,( = ~L), (3) maybe used

successively to find the characteristic impedances Z, of all sections of

the SIT.

The direct use of (6) to determine the normalized impedance

functions is not convenient, and we will develop a more convenient

method. For a lossless SIT we may express z,(s) as

(7)

we substitute (7) into (6), which becomes

If we note that M–IT = N_lT = M,+lT = N,+lT = ().
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From (8), Z,-I (s) appears at first to contain polynomials of higher

order than z,(s). However, if we substitute s = t 1 into (6) and use

(5), we see that both numerator and denominator are zero. Thus the

factor (s2 – 1) may be removed from both numerator and denomina-

tor of zr_l(s).

Let us write Z,-I(S) as

r— 1

/

.— 1

z,-,(s) = ~ N,’-’sk ~ ~,F’S’
b=o Lo

(9)

where we wish to determine the coefficients lf~’-l and N~’–l from the

known coefficients ~k’ and N~’. we multiply the numerator and

denominator of (9) by (s’ – 1) and compare the result to (8), and

obtain

Nh-2~1 – Nk’_l = f,ikfk_~’ – N~’ (lOa)

dfw-l – M~’–l = N~_L” – ~,ikfk’. (lOb)

These equations may be solved to give

fik’-l = (Nk’ + h7~_f + N~_4’ + . . . )

– i_,(Mk-f + ML3’ + ~fh_# + . . . ) (ila)

~fk=l = rr(~kr + ~k_2’ + ~k-4’ + -. . )

– (N)+-,’+ iv,-.,’+ Nk-,r + .0. ) (Ilb)

where the series are continued over positive subscripts only, in accord

with OU1-statement following (8). We may also obtain from (1 O) a

different form,

.– (Nk+f + Nk+4r+ Nk+6’ + . “ . ) (12a)

iVkF1 = (N~+lr + N~+# + N~+# + . . . )

– ~r(~f~+z’ + Jfk+4’ + J’fk+6’ + . . “ ) (1.2b)

with the series continued only for subscripts less than or equal to

superscripts.

From (11) we may obtain the compact recurrence relations

and from (12) we get

Equations (13) or (14)—or alternatively (11) or (12)—may be

used to reduce the order of the normalized impedance function each

time they are applied. Thus, by their use, if z.(s) is given, all of the

n characteristic impedances of the SIT may be found. Note that if

(11) or (13) is used, we find a coefficient in terms of the coefficients of

equal and lower powers of s, whereas, (12) or (14) gives a coefficient

in terms of the coefficients of equal and higher powers ofs. This gives

us a highly useful check on computational errors in determining the

coefficients.

In general the power reflection coefficient for a Iossless n-section

SIT may be written as [4]

I,(.) 1,= _9”@ @)
1 + L2.(COS 95)

(15)

where L2~ (COSI#J) is an even polynomial of degree 2n. By the trans-

formation s =j tan o we may write the voltage reflection coefficient

and the input impedance function as

~(s)_ Q.(s)

P“(s)

Pm(s) + Q.(s)
Zn(s) =

Pm(s) – Qm(~

(16)

(17)
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where Q.(s) and .Pn (s) are positive real polynomials of degree n. For with

passive networks, p(s) may be found uniquely from I p(s) I ‘ [7], [8].

For a Chebyshev transformer, we know that Ak = ~/Xh B~ = 42(.Y~ + ~~)/X~ Ch = ~/Uh (29)

()Cos .$
~2Tn2 __

1P(4) 1’=
Cos 41 I <X- I/%/K/

and [?z/2 ] is n/2 for n even and (n — 1) /2 for n odd. The desired

. = –ZTFZ)— (18) function z.(s) is found by substituting (27) and (28) into (17).

()

Cos +
1 + wzTn2 ——

. For the maximally flat transformer we know that

Cos dll

where T. is the Chebyshev polynomial of degree n, and +1 is defined I Pb)l’ = 1 w =*1 %/F- l/dFl. (30)
as ~~= T/ (1 +~2/jl), with ~1 and f~ the lower and upper passband fre- 1 + (l/w)z secz~ @

We write p(s) in the form

(19)

As before, we write p(s) in the form of (16), with Q. and P. given by

(27) and (28) with C,= O, and the X~ and Y, in (29) found from

Xk = 1 + ~4/n – ‘2w2/.

‘0s(%3 ’31)

where oh and gk are the poles and zeros of I p(s)/ ‘. By change of

variable and letting ‘k= 1 -“’’’”’Os(%”)
(32)

H = 2n cosh-l (see @l) (20)

W = 2 sinh-’ (l/w) (21)

we obtain
H

coshz —
2n

*k2 . 1 _ ——_—.—

(

w 2k–1 “

)

(22)

z%+j–~ Tcosh’ —

To find p~ from @hzit is convenient to form the two real quantities

xk = [(&) (p~’) * ]’(’ and Yk = Re (p~’), from which the @k are found by

(23)

where k=l,2, ..., (72/2) for n even, and k=l, 2, . . . . (ti+l)/2

for n odd.
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[
H w 2k–1 HW 2k–1

1
1/2

cosh2 — + coshz — + COS’—
n

7r — 2 cosh — cosh — COs—— m—l

.Xk = —
?2 n n n n

w 2k–1
cosh — + COS—— T

?2’ n

(24)

(1 + cosh ~
)(

2k–1
1 + cosh y COS—— .

9a )
Yk=l–

,.

~c~h ~- m
\n
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H 2h–1
cosh — — COS——— T

It n
Uk = —————

2k–1 “
(26)

1+ ’Os ——.
n
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k=]

P.(s) = ~(1 + R) ‘~ (1 + Bks + AM2) ‘
{;l + A(.+,,,,s),

~ ~dn (28)
k=l

2k–1 2
+’Os —7

n )
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Dielectric Losses in an H-Plane-Loaded

Rectangular Waveguide

VAN RE BUI AND RfiAL R. J. GAGNfi

Absfracf—The attenuation constant due to dielectric losses in a

rectangular waveguide loaded with a dielectric slab in the H-plane

is calculated. Results for the dominant LSMU mode are presented

graphically.
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